Краткий обзор понятий. 2 Алгоритмы сжатия текстов/файлов неизвестного формата




страница2/3
Дата31.08.2016
Размер0.54 Mb.
1   2   3

Локально адаптивный алгоритм сжатия.

Этот алгоритм используется для кодирования (L,I), где L строка длиной N, а I – индекс. Это кодирование содержит в себе несколько этапов.

1. Сначала кодируется каждый символ L с использованием локально адаптивного алгоритма для каждого из символов индивидуально. Определяется вектор целых чисел R[0],…,R[N-1], который представляет собой коды для символов L[0],…,L[N-1]. Инициализируется список символов Y, который содержит в себе каждый символ из алфавита Х только один раз. Для каждого i = 0,…,N-1 устанавливается R[i] равным числу символов, предшествующих символу L[i] из списка Y. Взяв Y = [‘a’,’b’,’c’,’r’] в качестве исходного и L = ‘caraab’, вычисляем вектор R: (2 1 3 1 0 3).

2. Применяем алгоритм Хафмана или другой аналогичный алгоритм сжатия к элементам R, рассматривая каждый элемент в качестве объекта для сжатия. В результате получается код OUT и индекс I.

Рассмотрим процедуру декодирования полученного сжатого текста (OUT,I).

Здесь на основе (OUT,I) необходимо вычислить (L,I). Предполагается, что список Y известен.



  1. Сначала вычисляется вектор R, содержащий N чисел: (2 1 3 1 0 3).

  2. Далее вычисляется строка L, содержащая N символов, что дает значения R[0],…,R[N-1]. Если необходимо, инициализируется список Y, содержащий символы алфавита X (как и при процедуре кодирования). Для каждого i = 0,…,N-1 последовательно устанавливается значение L[i], равное символу в положении R[i] из списка Y (нумеруется, начиная с 0), затем символ сдвигается к началу Y. Результирующая строка L представляет собой последнюю колонку матрицы M. Результатом работы алгоритма будет (L,I). Взяв Y = [‘a’,’b’,’c’,’r’] вычисляем строку L = ‘caraab’.

Наиболее важным фактором, определяющим скорость сжатия, является время, необходимое для сортировки вращений во входном блоке. Наиболее быстрый способ решения проблемы заключается в сортировке связанных строк по суффиксам.

Для того чтобы сжать строку S, сначала сформируем строку S’, которая является объединением S c EOF, новым символом, который не встречается в S. После этого используется стандартный алгоритм к строке S’. Так как EOF отличается от прочих символов в S, суффиксы S’ сортируются в том же порядке, как и вращения S’. Это может быть сделано путем построения дерева суффиксов, которое может быть затем обойдено в лексикографическом порядке для сортировки суффиксов. Для этой цели может быть использован алгоритм формирования дерева суффиксов Мак-Крейгта. Его быстродействие составляет 40% от наиболее быстрой методики в случае работы с текстами. Алгоритм работы с деревом суффиксов требует более четырех слов на каждый исходный символ. Манбер и Майерс предложили простой алгоритм сортировки суффиксов строки. Этот алгоритм требует только двух слов на каждый входной символ. Алгоритм работает сначала с первыми i символами суффикса а за тем, используя положения суффиксов в сортируемом массиве, производит сортировку для первых 2i символов. К сожалению этот алгоритм работает заметно медленнее.

В работе [1] предложен несколько лучший алгоритм сортировки суффиксов. В этом алгоритме сортируются суффиксы строки S, которая содержит N символов S[0,…,N-1].


  1. Пусть k число символов, соответствующих машинному слову. Образуем строку S’ из S путем добавления k символов EOF в строку S. Предполагается, что EOF не встречается в строке S.

  2. Инициализируем массив W из N слов W[0,…,N-1] так, что W[i] содержат символы S’[i,…,i+k-1] упорядоченные таким образом, что целочисленное сравнение слов согласуется с лексикографическим сравнением для k-символьных строк. Упаковка символов в слова имеет два преимущества: это позволяет для двух префиксов сравнить сразу k байт и отбросить многие случаи, описанные ниже.

  3. Инициализируется массив V из N целых чисел. Если элемент V содержит j, он представляет собой суффикс S’, чей первый символ равен S’[j]. Когда выполнение алгоритма завершено, суффикс V[i] будет i-ым суффиксом в лексикографическом порядке.

  4. Инициализируем целочисленный массив V так, что для каждого i = 0,…,N-1 : V[i]=i.

  5. Сортируем элементы V, используя первые два символа каждого суффикса в качестве ключа сортировки. Далее для каждого символа ch из алфавита выполняем шаги 6 и 7. Когда эти итерации завершены, V представляет собой отсортированные суффиксы S и работа алгоритма завершается.

  6. Для каждого символа ch’ в алфавите выполняем сортировку элементов V, начинающихся с ch, за которым следует ch’. В процессе выполнения сортировки сравниваем элементы V путем сопоставления суффиксов, которые они представляют при индексировании массива W. На каждом шаге рекурсии следует отслеживать число символов, которые оказались равными в группе, чтобы не сравнивать их снова. Все суффиксы, начинающиеся с ch, отсортированы в рамках V.

  7. Для каждого элемента V[i], соответствующего суффиксу, начинающемуся с ch (то есть, для которого S[V[i]] = ch), установить W[V[i]] значение с ch в старших битах и i в младших битах. Новое значение W[V[i]] сортируется в те же позиции, что и старые значения.

Данный алгоритм может быть улучшен различными способами. Одним из самоочевидных методов является выбор символа ch на этапе 5, начиная с наименьшего общего символа в S и предшествующий наиболее общему.

    1. Сжатие данных с использованием преобразования Барроуза-Вилера.

Майкл Барроуз и Давид Вилер (Burrows-Wheeler) в 1994 году предложили свой алгоритм преобразования (BWT). Этот алгоритм работает с блоками данных и обеспечивает эффективное сжатие без потери информации. В результате преобразования блок данных имеет ту же длину, но другой порядок расположения символов. Алгоритм тем эффективнее, чем больший блок данных преобразуется (например, 256-512 Кбайт).

Последовательность S, содержащая N символов ({S(0),… S(N-1)}), подвергается N циклическим сдвигам (вращениям), лексикографической сортировке, а последний символ при каждом вращении извлекается. Из этих символов формируется строка L, где i-ый символ является последним символом i-го вращения. Кроме строки L создается индекс I исходной строки S в упорядоченном списке вращений. Существует эффективный алгоритм восстановления исходной последовательности символов S на основе строки L и индекса I. Процедура сортировки объединяет результаты вращений с идентичными начальными символами. Предполагается, что символы в S соответствуют алфавиту, содержащему K символов.

Для пояснения работы алгоритма возьмем последовательность S= “abraca” (N=6), алфавит X = {‘a','b','c','r'}.


1. Формируем матрицу из N*N элементов, чьи строки представляют собой результаты циклического сдвига (вращений) исходной последовательности S, отсортированных лексикографически. По крайней мере одна из строк M содержит исходную последовательность S. Пусть I является индексом строки S. В приведенном примере индекс I=1, а матрица M имеет вид:


Номер строки




0

aabrac

1

abraca

2

acaabr

3

bracaa

4

caabra

5

racaab


2. Пусть строка L представляет собой последнюю колонку матрицы M с символами L[0],…,L[N-1] (соответствуют M[0,N-1],…,M[N-1,N-1]). Формируем строку последних символов вращений. Окончательный результат характеризуется (L,I). В данном примере L='caraab', I =1.

Процедура декомпрессии использует L и I. Целью этой процедуры является получение исходной последовательности из N символов (S).

1. Сначала вычисляем первую колонку матрицы M (F). Это делается путем сортировки символов строки L. Каждая колонка исходной матрицы M представляет собой перестановки исходной последовательности S. Таким образом, первая колонка F и L являются перестановками S. Так как строки в M упорядочены, размещение символов в F также упорядочено. F='aaabcr'.

2. Рассматриваем ряды матрицы M, которые начинаются с заданного символа ch. Строки матрицы М упорядочены лексикографически, поэтому строки, начинающиеся с ch упорядочены аналогичным образом. Определим матрицу M', которая получается из строк матрицы M путем циклического сдвига на один символ вправо. Для каждого i=0,…, N-1 и каждого j=0,…,N-1,

M'[i,j] = m[i,(j-1) mod N]

В рассмотренном примере M и M' имеют вид:
















































Строка

M

M'








0

aabrac

caabra










1

abraca

aabraс










2

acaabr

racaab










3

bracaa

abraca










4

caabra

acaabr










5

racaab

bracaa



















Подобно M каждая строка M' является вращением S, и для каждой строки M существует соответствующая строка M'. M' получена из M так, что строки M' упорядочены лексикографически, начиная со второго символа. Таким образом, если мы рассмотрим только те строки M', которые начинаются с заданного символа ch, они должны следовать упорядоченным образом с учетом второго символа. Следовательно, для любого заданного символа ch, строки M, которые начинаются с ch, появляются в том же порядке что и в M', начинающиеся с ch. В нашем примере это видно на примере строк, начинающихся с ‘a'. Строки ‘aabrac', ‘abraca' и ‘acaabr' имеют номера 0, 1 и 2 в M и 1, 3, 4 в M'.

Используя F и L, первые колонки M и M' мы вычислим вектор Т, который указывает на соответствие между строками двух матриц, с учетом того, что для каждого j = 0,…,N-1 строки j M' соответствуют строкам T[j] M.

Если L[j] является к-ым появлением ch в L, тогда T[j]=1, где F[i] является к-ым появлением ch в F. Заметьте, что Т представляет соответствие один в один между элементами F и элементами L, а F[T[j]] = L[j]. В нашем примере T равно: (4 0 5 1 2 3).

3. Теперь для каждого i = 0,…, N-1 символы L[i] и F[i] являются соответственно последними и первыми символами строки i матрицы M. Так как каждая строка является вращением S, символ L[i] является циклическим предшественником символа F[i] в S. Из Т мы имеем F[T[j]] = L[j]. Подставляя i =T[j], мы получаем символ L[T(j)], который циклически предшествует символу L[j] в S.

Индекс I указывает на строку М, где записана строка S. Таким образом, последний символ S равен L[I]. Мы используем вектор T для получения предшественников каждого символа: для каждого i = 0,…,N-1 S[N-1-i] = L[T i [I]], где T 0 [x] =x, а T i+1 [x] = T[T i [x]. Эта процедура позволяет восстановить первоначальную последовательность символов S (‘abraca').

Последовательность T i [I] для i =0,…,N-1 не обязательно является перестановкой чисел 0,…,N-1. Если исходная последовательность S является формой Z p для некоторой подстановки Z и для некоторого p>1, тогда последовательность T i [I] для i = 0,…,N-1 будет также формой Z 'p для некоторой субпоследовательности Z'. Таким образом, если S = ‘cancan', Z = ‘can' и p=2, последовательность T i [I] для i = 0,…,N-1 будет [2,4,0,2,4,0].

Описанный выше алгоритм упорядочивает вращения исходной последовательности символов S и формирует строку L, состоящую из последних символов вращений. Для того, чтобы понять, почему такое упорядочение приводит к более эффективному сжатию, рассмотрим воздействие на отдельную букву в обычном слове английского текста.

Возьмем в качестве примера букву “t” в слове ‘the' и предположим, что исходная последовательность содержит много таких слов. Когда список вращений упорядочен, все вращения, начинающиеся с ‘he', будут взаимно упорядочены. Один отрезок строки L будет содержать непропорционально большое число ‘t', перемешанных с другими символами, которые могут предшествовать ‘he', такими как пробел, ‘s', ‘T' и ‘S'.

Аналогичные аргументы могут быть использованы для всех символов всех слов, таким образом, любая область строки L будет содержать большое число некоторых символов. В результате вероятность того, что символ ‘ch' встретится в данной точке L, весьма велика, если ch встречается вблизи этой точки L, и мала в противоположном случае. Это свойство способствует эффективной работе локально адаптивных алгоритмов сжатия, где кодируется относительное положение идентичных символов. В случае применения к строке L, такой кодировщик будет выдавать малые числа, которые могут способствовать эффективной работе последующего кодирования, например, посредством алгоритма Хафмана.

2.5 Метод Шеннона-Фано.
Данный метод выделяется своей простотой. Берутся исходные сообщения m(i) и их вероятности появления P(m(i)). Этот список делится на две группы с примерно равной интегральной вероятностью. Каждому сообщению из группы 1 присваивается 0 в качестве первой цифры кода. Сообщениям из второй группы ставятся в соответствие коды, начинающиеся с 1. Каждая из этих групп делится на две аналогичным образом и добавляется еще одна цифра кода. Процесс продолжается до тех пор, пока не будут получены группы, содержащие лишь одно сообщение. Каждому сообщению в результате будет присвоен код x c длиной –lg(P(x)). Это справедливо, если возможно деление на подгруппы с совершенно равной суммарной вероятностью. Если же это невозможно, некоторые коды будут иметь длину –lg(P(x))+1. Алгоритм Шеннона-Фано не гарантирует оптимального кодирования.

1   2   3


База данных защищена авторским правом ©infoeto.ru 2016
обратиться к администрации
Как написать курсовую работу | Как написать хороший реферат
    Главная страница