Сборник статей Под редакцией А. В. Турчина Препринт Проект Российского Трансгуманистического Движения Москва 2011




страница41/45
Дата23.08.2016
Размер8.92 Mb.
1   ...   37   38   39   40   41   42   43   44   45

Арнон Дар. Влияние сверхновых, гамма-всплесков, солнечных вспышек и космических лучей на земную окружающую среду


Arnon Dar. Influence of Supernovae, gamma-ray bursts, solar flares, and cosmic rays on the terrestrial environment, Global Catastrophic Risks. Edited by Nick Bostrom, Milan M. Cirkovic, OXPORD UNIVERSITY PRESS, 2008
Перевод: А.В.Турчин

1. Введение
Перемены в окрестностях Солнца в результате его движения по Галактике, солнечная эволюция и галактическая звёздная эволюция – все они влияют на земную окружающую среду и подвергают жизнь на Земле космическим опасностям. Эти опасности включают в себя столкновения с околоземными объектами (NEO), глобальные климатические перемены в результате изменений солнечной активности и подверженность Земли очень большим потокам радиации и космическим лучам от галактических сверхновых (SN) и гамма-всплесков (GRB). Эти космические опасности имеют малую вероятность, но их влияние на Землю и их катастрофические последствия, которые следует из геологических данных, оправдывают их тщательное изучение и развитие рациональных стратегий, которые могут уменьшить создаваемую ими угрозу жизни и выживанию человеческой расы на этой планете. В этой главе я сосредоточусь на угрозах для жизни, связанных с высокими уровнями радиации и потока космических лучей (CR), которые достигают атмосферы как результат (1) изменений в солнечной светимости, (2) изменениях солнечного окружения, связанных с движением Солнца вокруг галактического центра, и в частности, в силу прохождения через галактические спиральные рукава, (3) осцилляции расположения перпендикуляра солнечной системы к галактическому плану, (4) солнечной активности, (5) галактических взрывов SN, (6) GRB и (7) всплесков космических лучей (CRB). Достоверность тех или иных космических угроз будет проверена на основании того, могли ли эти события вызвать массовые вымирания, которые имели место на Земле и относительно хорошо документированы на основании геологических данных за последние 500 млн.лет.


2. Радиационные угрозы
2.1 Достоверные угрозы
Достоверные утверждения о глобальной угрозе жизни из-за перемен во внешнем облучении Земли должны в начале продемонстрировать, что предполагаемые изменения будут больше, чем периодические изменения, вызываемые движением Земли, к которым жизнь на Земле уже приспособилась. Наибольшая доля энергии Солнца излучается в видимом диапазоне. Атмосфера весьма прозрачна для видимого света, но крайне непрозрачна для почти всех остальных световых диапазонов электромагнитного спектра за исключением радиоволн, чья продукция Солнцем весьма мала. Атмосфера защищает биоту на наземном уровне от сверхоблучения высокими потоками гамма-лучей, рентгеновских лучей и ультрафиолетовых лучей. Благодаря этой атмосферной защите жизнь на Земле не выработала иммунитета к этим видам радиации (за исключением видов, у которых были особые условия существования, таких как Deinoccocus radiodurance), но адаптировалась к нормальным потокам радиации, которые проникают в атмосферу. В частности, она адаптировалась к наземным уровням солнечного излучения, чьи широтные и сезонные изменения подвержены долговременным вариациям квазипериодического характера, так называемым циклам Миланковича, связанным с квазипериодическими изменениями движения и вращения Земли. Это включает в себя вариации эксцентриситета Земли, наклон оси Земли по отношению к нормали к плоскости вращения и прецессию земной оси. Милюти Миланкович, сербский астроном, вычислил их магнитуду и периоды увеличения или уменьшения солнечной радиации, которые напрямую воздействуют на климатическую систему Земли, влияя на продвижение и отступление земных ледников. Перемены климата, и связанные с ними периоды оледенения, не зависят от полного количества солнечной энергии, достигающей Земли. Три цикла Миланковича влияют на сезонность и распределение мест на Земле, на которые попадает солнечная энергия, таким образом, влияя на контраст между сезонами. Это важно, потому что Земля имеет ассиметричное распределение масс суши, которые (за исключением Антарктиды) почти целиком находится в/рядом с Северным полушарием.


Рис. 1. Интенсивная солнечная вспышка 4 ноября 2003 года. Гигантская область солнечных пятен выбросила интенсивную вспышку, за которой последовал мощный коронарный выброс (CME) 4 ноября 2003 года. Сама вспышка видна в нижнем правом углу в крайнем ультрафиолетовом диапозоне на фотографии космической солнечной обсерватории SOHO. Гигантская вспышка была одной из самых сильных когда-либо зафикисированных начиная с 1970-х годов, третья такая мощная вспышка из области AR10486 в течение двух недель. Благодарность за фотографию: SOHO-EIT Consortium, ESA, NASA240


Рис. 2. Столкновение кометы Шумейкера-Леви 9 с Юпитером с 16 до 22 июля 1994 года. Комета состояла из по крайней мере 21 различимого фрагмента с диаметрами до 2 км. Кадры, приведённые выше, показывают столкновение первого из 20 фрагментов с Юпитером. Верхний левый кадр показывает Юпитер сразу перед столкновением. Яркий объект справа – это ближайший спутник Юпитера Ио, и тусклая овальная структура в южном полушарии – это Большое красное пятно. Полярные шапки выглядят светлыми в тех лучах, в которых проводилось наблюдение, 2.3 мкм, которые были выбраны для усиления контраста между огненным шаром и юпитерианской атмосферой. На второй фотографии огненный шар появляются над юго-восточным краем планеты (нижний левый кадр). Огненный шар достигает максимальной светимости в течение нескольких минут, и в этот момент его светимость превосходит светимость Ио. Последний кадр показывает Юпитер через 20 минут, когда импактная зона более-менее потемнела. Благодарности: Credit: Dr. David R. Williams, NASA Goddard Space Flight Center



Рис. 3. Остатки сверхновой Кассиопея A. Cas A – это остатки сверхновой 300-летней давности, вызванные SN взрывом тяжёлой звезды. Каждая фотография остатка, сделанная крупнейшими обсерваториями, показывает разные его характерные черты. Космический телескоп Спитцер открыл тёплую пыль во внешней оболочке с температурой 10 °C и телескоп Хаббла обнаружил тонкие нитеобразные структуры более горячего газа с температурой около 10 000 °С. Рентгеновская обсерватория Чандра показала горячие газы с температурами около 10 миллионов градусов Цельсия. Эти высокие температуры возникли, когда выброшенный сверхновой газ врезался в окружающий газ и пыль со скоростями около 10 миллионов миль в час (примерно 5000 км/сек). Благодарности: NASA/CXC/MIT/UMass Amherst/M.D.Stage et al.

Даже когда все орбитальные параметры благоприятствуют оледенению, увеличения выпадения снега зимой и таяния летом недостаточно для того, чтобы запустить оледенение. Снег и лёд имеют более высокое альбедо (то есть отношение отражённого света к падающему), чем суша и растительность (если бы вся Земля была покрыта льдом, как огромный снежок, её альбедо составляла бы 0.84). Снежные массы и ледники отражают больше света в пространство, что приводит к охлаждению климата и позволяет ледникам расширяться. Подобным же образом сверхновые, GRB, солнечные вспышки и космические лучи имеют высокое влияние на земную окружающую среду.

Теория 1912 года Миланковича о циклах оледенений является общепринятой, поскольку палеоклиматические свидетельства содержат строгие спектральные компоненты, которые подтверждают циклы Миланковича. Однако недавно было заявлено, что высокоточные палеоклиматические данные обнаружили серьёзные расхождения с моделью Миланковича, которые серьёзно подвергают сомнению ее достоверность и заново открывают дискуссию о причинах циклов оледенений. Например, Kirkby et al. (2004) предположили, что оледенения связаны не с циклами изменения поступления солнечной радиации, но с изменениями космических лучей, возможно, в связи с их эффектами на облака. Даже если причина эпох оледенений всё ещё остаётся под вопросом, изменения глобального облучения космического происхождения должны быть больше, чем орбитальные модуляции солнечной радиации, для того, чтобы представлять достоверную угрозу земной жизни.
2.2. Солнечные вспышки
Солнечные вспышки являются наиболее высокоэнергетичными взрывами в Солнечной системе. Они происходят в солнечной атмосфере. Первая солнечная вспышка зафиксированная в астрономической литературе Ричардом Кэррингтоном, (Richard C. Carrington), случилась 1 сентября 1959 года. Солнечные вспышки приводят к выбросам электромагнитной радиации, энергетических электронов, протонов и атомных ядер (солнечные космические лучи) и замагниченной плазмы из локальной области на Солнце. Солнечная вспышка происходит, когда магнитная энергия, которая накопилась в солнечной атмосфере, внезапно выделяется. Излучаемая электромагнитная радиация распределена по всему спектру, от радиоволн через оптический диапазон до рентгеновских и гамма-лучей. Энергии солнечных космических лучей достигают нескольких гигаэлектрон вольт, то есть 109 еВ (1 ev = 1, 6021753(14)* 10-13 J). Частота солнечных вспышек варьируется от нескольких в день, когда Солнце особенно активно, до одной в неделю, когда Солнце спокойно. Подготовка солнечной вспышки занимает несколько часов или дней, но во время самой вспышки энерговыделение происходит только за несколько минут.

Полное выделение энергии при вспышке имеет порядок 1027 эрг/сек. Большие вспышки могут выбросить около 1032 эрг. Эта энергия менеше, чем одна десятая полной энергии, излучаемой Солнцем за одну секунду. (I. = 3.84 x 1033 erg s -1). В том маловероятном случае, если вся магнитная энергия Солнечной атмосферы разрядится в одной вспышке, энергия Солнечной вспышки не может превышать ~ B2R3/12 ~ 1.4 x 1033 erg, где B=50 гауссов – это сила солнечного дипольного магнитного поля и R=7*1010 см – солнечный радиус. Но даже эта энергия – это только одна треть от полной энергии, излучаемой Солнцем каждую секунду. Таким образом, отдельные солнечные вспышки не могут вызвать глобальную катастрофу на Земле. Однако солнечные вспышки и связанные с ними коронарные выбросы сильно влияют на нашу комическую погоду. Они создают потоки высокоэнергетичных частиц в солнечном ветре и земной магнитосфере, которые могут представлять опасность для космических аппаратов и космонавтов. Мягкие рентгеновские лучи от солнечных вспышек увеличивают ионизацию верхней атмосферы, что может влиять на коротковолновую радиокоммуникацию и может увеличивать сопротивление атмосферы низкоорбитальным спутникам, приводя к снижению их орбиты. Космические лучи, которые проходят сквозь биологические тела, наносят им биохимический ущерб. Большое число солнечных космических лучей и магнитных штормов, которые создаются большими солнечными вспышками, представляют опасность для незащищённых космонавтов в межпланетном пространстве. Земная атмосфера и магнитосфера защищает людей на Земле.


2.3. Солнечная активность и глобальное потепление
Глобальные температуры выросли в XX веке на примерно 0,75 градуса °С по отношению к периоду 1860-1900 гг. Измерения на суше и на море независимо показывают одинаковое потепление с 1860 г. В течение этого периода концентрация СО2 в земной атмосфере увеличилась примерно на 27% с 290 до 370 частей на миллион (ppm). Этот уровень значительно выше, чем когда-либо за последние 800 000 лет – за период, на который есть надёжные данные на основании кернов льда. Это увеличение СО2 в атмосфере считается связанным с антропогенной активностью – в основном, со сжиганием ископаемых и сведением лесов. Недавно Международная Панель по Климатическим Изменениям IPCC пришла к выводу, что «большая часть наблюдаемого увеличения глобальных температур с середины XX века связана с наблюдаемым увеличением концентрации парниковых газов» посредством парникового эффекта (процесс, в котором инфракрасное излучение атмосферы нагревает поверхность планеты, как это происходит на Марсе, Земле и особенно на Венере, что было открыто Иосифом Фурье в 1829 г.). основываясь на климатических моделях, учёные предполагают что глобальные поверхностные температуры вероятно возрастут на 1,1 – 6,4 °С к 2100 году. Увеличение глобальных температур должно привести к другим переменам, включая изменения уровня моря, увеличение интенсивности экстремальных погодных явлений, и изменения количества и характера осадков. Другие эффекты глобального потепления включают в себя изменения в уровнях урожайности, отступление ледников, вымирание видов и увеличение ареалов возбудителей опасных болезней.

Однако, хотя большинство учёных по существу согласны, что человечество должно резко сократить выбросы парниковых газов и других загрязнителей, есть учёные, которые не согласны с выводами IPCC о том, что есть существенные доказательства того, что выбросы антропогенного СО2 в атмосферу и других газов являются главной причиной глобального потепления. Они указывают на то, что половина наблюдаемого потепления пришлась на начало XX века, задолго до того, как имели место антропогенные влияния. Более того, Земля испытывала доисторические значительные потепления и похолодания много раз в прошлом, как следует из геологических данных и косвенных измерений прошлых глобальных температур, таких как концентрация молекул тяжёлой воды D2O и Нг18О в кернах льда: относительная скорость испарения этих молекул из морской воды в сравнении с обычной H2O увеличивается с температурой. Это увеличивает концентрацию молекул тяжёлой воды в осадках, которые затем затвердевают в виде льда на северном и южном полюсах Земли. В частности, ледяные керны со станций Восток и Эпикаант, которые датируются сроками до 740 000 лет назад, показывают восемь предыдущих циклов оледенения с сильными вариациями температуры от – 8 до +3 градусов в самые тёплые периоды. Изменения в атмосферной концентрации СО2 следуют вплотную за изменениями глобальной температуры. Сторонники теории об антропогенном глобальном потеплении утверждают, что значительный выброс парниковых газов из естественных источников привёл к прошлым глобальным потеплениям, тогда как другие считают, что выделение больших количеств СО2 из океанов было вызвано подъёмом температуры за счёт глобального потепления. К сожалению, до сих пор нет точных данных, которые могли бы показать, какое из событий предшествовало какому: увеличение СО2 или глобальное потепление.

Глобальное потепление остаётся активной областью исследований, хотя научный консенсус состоит в том, что именно антропогенные парниковые газы ответственны за него. Однако, консенсус – это не лучшее научное доказательство. Были предложены и другие гипотезы для объяснения увеличения средней глобальной температуры, и они должны быть исследованы научным образом. Одной из наиболее убедительной (для автора этой статьи) является гипотеза о том, что нынешнее глобальное потепление является в основном результатом уменьшения потока космических лучей, которые достигают атмосферы в результате увеличения солнечной активности (например см. Shaviv, 2005; Svensmark, 1998). Эта возможность рассматривается в секции 3.
2.4 Вымирание в результате солнечной активности
Солнце имеет возраст 4.5 миллиарда лет. Оно продолжит светить ещё 5 миллиардов лет. Но оно исчерпает запасы водорода в своём ядре в течение менее, чем 2 миллиардов лет от настоящего момента. Тогда ядро Солнца сожмётся и станет достаточно горячим для термоядерной реакции на гелии в ядре, и горения водорода в оболочке этого ядра. Благодаря растущему радиационному давлению в горящем ядре, Солнце начнёт расширяться в красный гигант. Эта фаза будет довольно быстрой и займёт примерно 10 млн. лет. Когда Солнце станет красным гигантом, Меркурий и Венера будут поглощены Солнцем, и, возможно, Земля тоже будет поглощена. Даже если Земля не будет поглощена, условия на ее поверхности станут непригодными для жизни. Увеличившаяся светимость Солнца нагреет земную поверхность до такой степени, что вода океанов и атмосфера улетучатся в космическое пространство. Фактически, в ближайшие 1 или 2 млрд. лет, ещё до фазы красного гиганта, выделение энергии Солнцем увеличится до такой степени, что Земля станет слишком горячей для того, чтобы поддерживать жизнь.
2.5 Излучение от взрывов сверхновых
Наиболее яростные события, которые, вероятно, происходили в солнечном окружении в течение геологического и исторического времени – это взрывы сверхновых. Такие взрывы – это яркая смерть массивных звёзд, следующая за гравитационным коллапсом их ядра (сверхновые коллапсары), либо белых карликов в бинарных системах, чья масса за счёт аккреции возросла сверх предела Чандрасекара (термоядерные сверхновые)

Сверхновые-коллапсары взрываются, когда ядерное топливо в ядре массивной звезды с массой больше 8 солнечных истощается и больше не может поддерживать термальное давление, которое уравновешивает гравитационное давление вышележащих слоёв. Затем ядро коллапсирует в нейтронную звезду или звёздную чёрную дыру и высвобождает большое количество гравитационной энергии (~3 x 1053 erg), большая часть которой превращается в нейтрино и только несколько процентов – в кинетическую энергию извергаемой звёздной оболочки, которая содержит радиоизотопы, поставляющие большую часть энергии для излучения.

Термоядерная сверхновая представляет собой термоядерный взрыв белого карлика в двойной звёздной системе. Белые карлики представляют собой конечную точку эволюции звёзд с массами меньшими, чем 8 солнечных масс. Они обычно состоят из углерода или кислорода. Их массы не могут превосходит 1,4 массы Солнца. Белый карлик в бинарной звёздной системе может аккрецировать материал своей звезды компаньона, если они достаточно близки друг к другу за счёт гравитационного притяжения. Падающая материя со звезды компаньона заставляет белый карлик пересечь границу массы в 1.4 солнечной (называемой предел Чандрасекара) и коллапсировать гравитационно. Выделение гравитационной энергии приводит к росту температуры до уровня, на котором углерод и кислород начинают неконтролируемо вступать в термоядерную реакцию. В результате происходит термоядерный взрыв, который разрушает звезду полностью.

Если взрыв сверхновой произойдёт достаточно близко к Земле, он может иметь катастрофические последствия для ее биосферы. Потенциальные последствия взрыва сверхновой около Земли были рассмотрены рядом авторов (Ellis and Schramm, 1995; Ellis et al., 1996; Ruderman, 1979), и последняя работа предполагает, что наиболее важные эффекты будут вызваны их космическими лучами. В частности, их возможная роль в разрушении озонового слоя Земли и открытии земной биосферы для интенсивного облучения солнечными УФ-лучами была подчёркнута в работе Ellis and Schramm, 1995; Ellis et al., 1996. В начале мы рассмотрим прямые радиационные риски, связанные с излучением сверхновой.

Среди новых элементов, которые возникают при взрыве сверхновой- коллапсара и термоядерной сверхновой – радиоактивный никель, который высвобождает огромные количества энергии среди остатков сверхновой. Большая часть этой энергии высвобождается среди остатков и излучается в виде видимого света. Однако свет сверхновой не представляет собой высокого риска. Самые яркие сверхновые достигают пика светимости в 1043 эрг/сек через примерно пару недель после взрыва, и затем светимость убывает примерно экспоненциально с периодом «полураспада» в 77 дней (что соответствует периоду полураспада радиоактивного кобальта, возникающего в результате распада никеля). Такая светимость на расстоянии 5 парсек от Земли в течение пары недель добавит примерно 1% к солнечному излучению, которое достигает Земли и не будет иметь никаких катастрофических последствий. Более того, средняя частота галактических сверхновых составляет примерно 1 раз в 50 лет (van den Bergh and Tammann, 1991). Большинство взрывов сверхновых случаются гораздо ближе к центру Галактики, чем проходит орбита Солнца. На основании наблюдаемого распределения галактических остатков сверхновых, и средней частоты взрывов сверхновых, вероятность того, что в течение ближайших 2 миллиардов лет (до того, как Солнце станет красным гигантом) Солнечная система в своём галактическом движении пройдёт на расстоянии 15 световых лет от сверхновой, составляют менее 1%.

Прямые угрозы Земле от ультрафиолетового, рентгеновского и гамма излучения сверхновых и их остатков ещё меньше, поскольку атмосфера непрозрачна для этих излучений. Единственная серьёзная угроза состоит в возможном разрушении земного озонового слоя, за которым последует проникновение солнечного УФ излучения и поглощение видимого света окисью азота NO2 в атмосфере. Однако угроза со стороны сверхновых, находящихся на расстоянии более 30 световых лет, не превышает угрозу от солнечных вспышек. Озоновый слой часто повреждается солнечными вспышками и, судя по всему, восстанавливался относительно быстро.


2.6 Гамма-всплески
Гамма-всплески – это короткие вспышки гамма-лучей с энергией в диапазоне МэВ, которые происходят в наблюдаемой вселенной приблизительно 2-3 раза в день (см., например, Meegan and Fishman, 1995). Они делятся на два различных класса. Примерно 75% – это длинные всплески с мягким спектром, которые длятся более чем 2 секунды, остальные – это короткие вспышки с жёстким спектром (SHB), которые длятся менее 2 секунд.

Всё больше накапливается свидетельств из наблюдений послесвечений длинных гамма-всплесков, что длинные всплески создаются высокорелятивисткими джетами, извергаемыми в момент смерти массивными звёздами при взрывах сверхновых.(см например Dar 2004 и ссылки в внутри этой статьи). Природа коротких гамма-всплесков только отчасти известна. Они не связаны со взрывами сверхновых какого-либо известного типа, и их энергия на три порядка меньше.

Thorsett (1995) первым высказался о потенциальном воздействии на атмосферу Земли и об ущербе биоте в результате жёстких рентгеновских и гамма-лучей из галактического гамма-всплеска, направленного на Землю, в то время как Dar и др. (1998) предположили, что основной ущерб от галактических гамма-всплесков происходит за счёт космических лучей, ускоренных джетами, которые созданы гамма-всплеском (Shaviv and Dar, 1995). В то время как потоки гамма-лучей и рентгеновских лучей от галактических гамма-всплесков, которые попадают на Землю, и их частота могут быть надёжным образом измерены на основании наблюдений гамма-всплесков и их связи со сверхновыми, это не верно для космических лучей, чьё излучение может быть оценено только на основании сомнительных моделей. Следовательно, хотя эффекты от космических лучей могут быть гораздо более разрушительны, чем эффекты от гамма-лучей и рентгеновских лучей от того же самого события, другие авторы (e.g., Galante and Horvath, 2005; Melott et al., 2004; Scab and Wheeler, 2002; Smith et al., 2004; Thomas et al., 2005) предпочитают концентрироваться в основном на эффектах облучения гамма-лучами и рентгеновскими лучами.

Распределение взрывов сверхновых по галактике известно на основании распределения их остатков. Большинство взрывов сверхновых происходит в галактическом диске на галактоцентрических расстояниях, которые гораздо меньше, чем расстояние от Земли до центра галактики. Их среднее расстояние до Земли примерно 25 000 лет. На основании измеренного потока энергии от гамма-всплесков (энергии, которая достигает Земли на единицу площади) при известном красном смещении, было обнаружено, что средняя энергия излучения длинного гамма-всплеска составляет примерно 5 x 1053/dO/4п эрг, где dO – телесный угол, освещаемый гамма-всплеском (угол излучения). Энергия излучения короткого гамма-всплеска меньше приблизительно на 2-3 порядка.

Если гамма-всплески в нашей галактике не отличаются от всплесков в других галактиках, то тогда их поток излучения пропорционален обратному квадрату расстояния. Если типичный галактический гамма-всплеск на расстоянии 25 000 световых лет будет направлен прямо на Землю, то тогда полушарие Земли, повёрнутое в сторону гамма-всплеска, будет освещено гамма-лучами с полным потоком 5 x 1053/4п d2 ~ 4 x 107 эрг/сек в течение 30 сек. /То есть 120 джоулей на кв. см за эти 30 секунд – АТ или в 40 раз больше, чем светимость солнца./ Излучение и момент количества движения гамма-всплеска высвободится примерно внутри 70 г/кв.см верхнего слоя атмосферы (полная толщина атмосферы на уровне моря равна примерно 1000 г./кв.см.) Такие потоки разрушат озоновый слой и создадут мощную ударную волну, которая пойдёт вниз по атмосфере, вызывая гигантские глобальные штормы и сильные пожары. Smith et al. (2004) оценили, что доля от 2 x 10~3 до 4 x 10~2 потока энергии гамма-всплеска превратится в атмосфере в УФ поток на уровне земли. Основной ущерб от УФ излучения терпят молекулы ДНК и РНК, которые впитывают это излучение.

Летальная доза УФ излучения составляет примерно 104 эрг/кв.см., делая гамма-всплеск на расстоянии 25 000 световых лет крайне смертельно опасным (e.g., Galante and Horvath, 2005) для того полушария, которое обращено к гамма-всплеску. Однако условия обитания могут предоставить защиту (под водой, под землёй, под крышей и в затенённых областях) или при качественной защите, даваемой кожей, каковой является мех у животных и одежда у людей. Короткое время гамма-всплеска и отсутствие какого-либо предупреждающих сигналов делает спасение путём перемещения в укрытие или в тень или путём быстрого накрывания чем-то – нереалистичным для большинства видов живых существ.



Следует отметить, что мега-электрон-вольтное гамма-излучение гамма-всплеска может сопровождаться короткой вспышкой очень высоко-энергетичных гамма-лучей, которые в настоящий момент не могут быть зафиксированы ни с помощью спутников, наблюдающих в гамма-лучах и рентгеновских лучах (CGRO, BeppoSAX, HETE, Chandra, XMMNewton, Integral, SWIFT и межпланетная сеть), ни наземными гамма-телескопами высоких энергий, такими как HESS и Magic (по причине задержки во времени реакции). Такие вспышки гамма-лучей в диапазоне энергий GeV и TeV, если их производит гамма-всплеск, могут быть зафиксированы широкоформатным космическим гамма-телескопом (Gamma-ray Large Area Space Telescope (GLAST)), который будет запущен в космос 16 мая 2008 г. GeV-TeV гамма-лучи от относительно близкого гамма-всплеска могут создавать смертельные дозы атмосферных мюонов.
1   ...   37   38   39   40   41   42   43   44   45


База данных защищена авторским правом ©infoeto.ru 2016
обратиться к администрации
Как написать курсовую работу | Как написать хороший реферат
    Главная страница