В. А. Афанасьев multiSim 10. 1: – быстрый старт




Скачать 0.57 Mb.
страница 2/6
Дата 27.08.2016
Размер 0.57 Mb.
1   2   3   4   5   6

3. Структура и характеристика элементной базы Multisim 10.1


3.1. Структура элементной базы

Структура элементной базы Multisim имеет три уровня иерархии: база (Master Database, Corporate Database, User Database), группа (Group), серия (Family). Данные уровни легко просматриваются при работе с браузером выбора и размещения компонентов Select a Component, вызываемого командой меню Place/Component.

База данных Master Database доступна только для чтения и определена собственником программы National Instruments, User Database – включает компоненты, созданные пользователем программы, Corporate Database – корпоративная или ведомственная база данных, как правило, включает «заказные» компоненты для моделирования специальных схем.

Группы компонентов представлены панелью компонентов (см. рис. 1 и рис. 8).



Рис. 8. Группы стандартных компонентов программы

Каждая группа содержит семейство (Family) связанных компонентов:

1. Sources – различного рода источники напряжения (двухфазные, трехфазные) и тока, однополярные источники напряжения и тока произвольной формы, цифровая и аналоговые земли и др.

2. Basic - резисторы, конденсаторы, переменные резисторы и конденсаторы, катушки индуктивности, реле, набор промышленных разъемов и сокетов (socket) для полупроводниковых приборов и микросхем.

3. Diodes - диоды, светодиоды, диодные мосты, стабилитроны и др.

4. Transistors – разнообразные виды транзисторов.

5. Analog - аналоговые микросхемы: операционные усилители, компараторы напряжения, микросхемы для систем фазовой автоподстройки частоты и др.

6. TTL (транзисторно-транзисторные логические схемы) - микросхемы семейств: 74STD, 74S, 74LS, 74F, 74ALS, 74AS.

7. CMOS – Микросхемы семейств CMOS, 74HC, TinyLogic.

8. Misc (Miscellaneous - разнообразный) Digital – виртуальные цифровые схемы, элементы памяти, VHDL-модели цифровых схем.

9. Mixed (смешанный) - микросхемы смешанного типа. В раздел входят АЦП, ЦАП, мультивибраторы, интегральные таймеры, аналоговые ключи и др.

10. Power – стабилизированные источники питания, прецизионные опорные напряжения, шунты и плавкие вставки и др.

11. Indicators - раздел содержит амперметры и вольтметры с цифровым отсчетом, одиночные и многосегментные светоиндикаторы, наборы из автономных светодиодов (столбиковые индикаторы Bargraph Display) и др.

12. Misc (Miscellaneous) - кварцевый резонаторы и специальные компоненты смешанного типа.

13. Advanced Peripheral – клавиатурные терминалы и др.

14. RF (Radio Frequency) - содержит модели СВЧ – компонентов.

15. Electro-mechanical – набор большого количества моделей электромеханических элементов (сенсорные ключи, инерциальные ключи, многополюсные переключатели, элементы электропривода и др.).

16. MCU (Microcontroller`s Unit) – микропроцессорный набор на основе 8051(2).
В практике цифрового моделирования по курсу «Теория автоматов» будет использоваться ограниченное число элементов базы компонентов Multisim, в основном это касается групп с номерами 1,2, 6 -11.

Следует также отметить, что щелчок ЛКМ по любой кнопке панели компонентов рис. 8 вызовет появление браузера выбора и размещения компонентов этой группы.

3.2. Виртуальные и реальные компоненты в базе данных Multisim10.1

Строго говоря, все схемотехнические компоненты являются виртуальными, поскольку при моделировании представлены своими математическими моделями, однако имеются различия как в моделях (одни учитывают временные задержки распространения сигналов, другие – нет; Spice-модели или VHDL-модели), так и в их привязке к некоторым конструктивным параметрам, в частности, к корпусам. Последнее обстоятельство является необходимым условием при реализации сквозного проектирования проекта, оканчивающегося разводкой печатной платы создаваемой схемы.

На рис. 9 а) и б) представлены диалоговые окна Select a Component браузера выбора виртуального и реального компонентов применительно логическим элементам TTL- логики.

Рис. 9, а. Выбор виртуального компонента NAND2, группы Misc Digital, семейства TTL



Рис. 9, б. Выбор реального компонента 7400 (2-Input NAND), группы TTL, семейства (серии) 74STD



Рис. 10. Изображение реального и виртуального компонента на рабочем поле



Реальный и виртуальный компоненты имеют различное цветовое изображение на рабочем поле Circuit, реальный компонент – синий цвет, виртуальный – чёрный!

Подробную информацию о данных компонентах можно получить, раскрыв закладку Detail Report в диалоговых окнах Select a Component. Главными признаками, отличающими реальный компонент от виртуального, считаются: наличие привязки компонента к реальному корпусу (Footprint – отпечаток корпуса на печатной плате), упаковочной информации для этого корпуса (количество элементов или секций в одном корпусе – Package type) и наличие изготовителя (manufacturer). Как правило, в графе «Имя изготовителя» для виртуального элемента указано - «Generic», т, е, непатентованный.

Библиотека виртуальных компонентов Multisim 10.1 включает также компоненты с предельными параметрами (Rated components), входящие в группу Basic/Rated_virtual. При моделировании для данных компонентов можно вводить предельные параметры, превышение которых приводит к повреждению компонента. В качестве таких параметров используется обычно ограничение по мощности, напряжению, максимальному коллекторному току транзистора и т. д.

3.3. Характеристика групп цифровых компонентов TTL - и CMOS –логики

Основными компонентами цифровых схем являются элементы 2-х групп: TTL и CMOS.

Группа TTL включает следующие серии:



  • 74STD(STD_IC),

  • 74S(S_IC),

  • 74LS(LS_IC),

  • 74F,

  • 74ALS,

  • 74AS.

Ввод компонента в рабочее поле программы осуществляется в соответствие с национальными или международными стандартами на их графическое изображение для принципиальных или функциональных схем. При этом условное графическое обозначение (УГО) компонента без маркера IC, относится всегда к одной секции компонента (правда она для данного корпуса может быть единственной) и используется при начертании функциональных схем.

Дополнительный маркер IC относится не к технологической особенности серии, а к форме изображения компонента на рабочем поле программы Multisim 10.1. УГО компонентов с маркером IC представляет собой графический отпечаток корпуса (Footprint) с выводами (включая контакты для питания и заземления), в котором может находиться одна или более секций (одна секция - один логический элемент). Такое представление компонента соответствует требованиям принципиальной схемы.



В лабораторном практикуме будут использоваться УГО для функциональных схем.

Основные характеристики компонентов указанных серий приведены в нижеследующей табл. 1.



ИС технологии TTL (Transistor-Transistor Logic, 74 – коммерческое применение,

54 – военное) Таблица 1

Тип

Отечественный аналог

Быстродействие

(задержка на вентиль в нc)

Статическая

мощность

(вентиль, мвт)

Энергия переключения

Пикоджоули = мвт*нс

0,1 – 10 МГц

74

74H


74L

155

131


158

10

6

33



10

22

1



100

132


33

74S

LS

AS



ALS

531

555
1533



3

9

1,7



4

19

2

8



1,2

57

19

33



4

74F

1531

3

4

8

Примечание. S Schottky TTL (TTL схемы с транзистором Шоттки), LS Low power Schotky TTL(маломощные), AS Advanced Schottky TTL (улучшенные), ALS – улучшенные маломощные, F Fast TTL (быстрые TTL, разработка фирмы Fairchild), H High Speed – быстродействующие, L Low Power (маломощные TTL).
Группа CMOS (цифровые схемы на комплементарных МОП - транзисторах) включает следующие серии:

– CMOS_5v (10v, 15v),

– 74HC_2v (4v, 6v),

– Tinylogic_2v (3v, … 6v).

Серии CMOS на сегодняшний день являются устаревшими и в практической разработке схем не используются, характеристики КМОП для 74-серий приведены в табл. 2.

ИС технологии КМОП для 74-серий. Таблица 2


Тип

Отечественный аналог

Быстродействие

(задержка на вентиль в нc)

Статическая

мощность

(вентиль, мвт)

Энергия переключения

Пикоджоули = мвт*нс

0,1 – 10 МГц

74HC

74HCT


1564

9

10


0,0125

0,61 – 50

0,5 – 38


74AC, (ACT

VHC, VHCT)






5 – 7

0,025

0,38 – 25

0.77 – 24



74FCT

FCT-T





*)Применяется только для СИС и БИС




Примерно такое же, как и в предыдущей группе

Примечание. MOS – (Metal Oxide Semiconductor), C – CMOS (complementary MOS),

H – high (высокий), A – advanced (усовершенствованный), Т – совместимый с TTL – уровнями, VH – Very High Speed (повышенное быстродействие), FCT – фирма Fairchild (сверхбыстродействующая совместимая с TTL), FCT-T – улучшенная по совместимости с TTL.

4. Размещение проводников, символов “земли” и источников питания



  • Размещение проводников

После размещения компонентов производится соединение их выводов проводниками.

Чтобы усвоить технику прокладки проводников, разместите с помощью браузера в рабочем окне программы несколько компонентов TTL-логики.

Для выполнения подключения курсор мыши подводим к выводу компонента и, после появлении кружка чёрного цвета с перекрестием, щёлкаем ЛКМ. Появляющийся при этом проводник, протягивается к выводу другого компонента до момента, когда чёрный кружок как бы окрашивается голубым цветом, после чего снова щёлкаем ЛКМ – соединение готово. Multisim автоматически проложит провод, который ляжет в удобной форме. При этом необходимо учитывать, что к выводу (pin) компонента можно подключить только один проводник. Вы сможете контролировать форму укладки соединительной линии, щёлкая ЛКМ в местах, в которых вы хотите “зафиксировать” провод. Вообще-то, если вы хотите воспользоваться всеми возможностями программы при работе с проводниками, установить все опции раздела Wiring на закладке General в ДО Preferences, вызываемого командой Options/Global Preferences.

Ещё одним важным элементом соединения в схеме является точка соединения (junction). Она обозначается жирной точкой на поле ввода. Точка или узел соединения существует для того, чтобы соединить в одном месте три и более проводника. Размещается точка соединения (на уже существующем проводнике или на свободном месте рабочего окна) щелчком ЛКМ двумя способами: командой основного меню Place/junction или командой Place Schematic/junction pop-up меню. Если при прокладке проводника требуется выполнить соединение на уже существующем проводнике, то нужно просто щёлкнуть в этом месте ЛКМ (если на пересечении двух проводников нет узла, это означает, что проводники физически не пересекаются).

Если есть необходимость выводы компонента дополнить проводниками, заканчивающимися точкой соединения, то нужно произвести двойной щелчок ЛКМ и протянуть курсор к выводу компонента. Кстати, таким же образом можно в пространстве схемы расположить произвольное число проводников, оканчивающихся точкой соединения.

Если нужно пересоединить проводник с одного вывода компонента на другой, подведите курсор к этому выводу, это вызовет появлении специфического маркёра (крест в виде буквы Х с жирным хвостиком, расположенном на проводнике). Нажмите левую кнопку мыши (крест пропадёт, а проводник окрасится в голубой цвет) и, не отпуская её, перетащите проводник на другой вывод компонента, отпустите кнопку и щёлкните ЛКМ.

При необходимости переместить отдельный сегмент проводника нужно подвести к нему курсор, нажать левую кнопку мыши и, после появления в вертикальной или горизонтальной плоскости двойного курсора, произвести нужные перемещения.


  • Размещение символов “земли” и источников питания

В программе Multisim имеется два символа земли: аналоговая или земля общего типа и цифровая земля . Земля общего типа используется во всех случаях моделирования, за исключением моделирования цифровых устройств в реальном режиме. Тип моделирования устанавливается с помощью диалогового окна Digital Simulation Settings, вызываемого командой меню Simulate/Digital Simulation Settings. Установим режим Ideal (faster simulation).

В программе Multisim 10.1 имеются 4 вида источников питания (группа Sources/ Power_sources): Vcc, Vdd, Vee, Vss. В принципе, для питания электронных схем может быть использован любой из данных компонентов, надо только устанавливать нужный уровень напряжения (см. рис. 11). Однако, рекомендуется следующее правило использования:



  • Vcc – питание компонентов TTL,

  • Vdd и Vss – питания компонентов CMOS

  • Vee –питание в цифровых схемах общего назначения.

О

Рис. 11. Установка величины напряжения

источника

1   2   3   4   5   6


База данных защищена авторским правом ©infoeto.ru 2022
обратиться к администрации
Как написать курсовую работу | Как написать хороший реферат
    Главная страница